Skip to main content

The human sensory experience is limited. Journey into the world that animals know

In his new book, An Immense World, Yong explores the diversity of perception in the animal world and the limitations of our own perception. He notes that each animal has access to its own sensory environment — called an "umwelt" — which creates its own "bespoke sliver of reality."




Related Topic



This is FRESH AIR. I'm Terry Gross. After reporting on the first year of the pandemic for The Atlantic, for which he won a Pulitzer Prize, my guest, science writer Ed Yong, decided he needed to take a break. He wanted to shift his focus from the catastrophes and tragedies caused by COVID to a facet of the natural world he hoped would bring some joy to his life and to his readers. The result is his new book, "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." It's almost like science fiction or the supernatural, in that it describes the worlds that animals, birds and insects perceive that humans can't - the sounds, smells, colors, vibrations, echoes, and magnetic fields that exist beyond the limits of our senses. He writes about animals with eyes on their genitals, ears on their knees, noses on their limbs and tongues all over their skin. Some sensations that people perceive as pain aren't experienced as pain in certain species. As he puts it, every animal, including humans, can only tap into a small fraction of reality's fullness. The book is about the diversity of perception in the animal world and the limitations of our own perception. Ed Yong wrote about sensory biology before the pandemic and is now back to writing about COVID. We'll get to that later.

Ed Yong, welcome back to FRESH AIR.

ED YONG: Hi. Thanks for having me.

GROSS: So your book is about how every animal, including us, is enclosed within its own sensory bubble, as you put it, perceiving but a tiny sliver of an immense world, which leads to the word umwelt, which is a word I'm sure you'll be using. So why don't you describe what it is?

YONG: So umwelt was popularized by a German biologist named Jakob von Uexkull. The word comes from the German for environment, but von Uexkull wasn't using it to mean the physical environment. He meant the sensory environment, the unique set of smells, sights, sounds and textures that each animal has access to and that might be unique to it, its own little bespoke sliver of reality. So I'll give you an example. Like, humans can see colors ranging from red to violet, but we don't - we aren't able to see the ultraviolet colors that actually most sighted animals can perceive. We can't detect the magnetic fields of the Earth that songbirds and sea turtles can. We can't detect the ultrasonic frequencies that bats use to navigate around them or that rats and mice used to send messages to each other that we can't hear. So every creature has these sensory limitations and is enclosed in its own particular sensory bubble. And that's what the umwelt is.

GROSS: Where are you now?

YONG: I am in my home in D.C. I am in the recording studio/shoe closet of the bedroom or, as my wife calls it, our shoedio (ph).

GROSS: OK. So it's not exactly a rich sensory environment. But if...

YONG: It is not.

GROSS: If you were one of the animals you were writing about or insects or birds, what might you perceive in this studio/closet that you can't perceive now?

YONG: So at the start of the book, I do this - exactly this thought experiment, right? I imagine that I'm - a human is sharing a physical space with a bunch of creatures - say, a rattlesnake, an elephant, a mouse, a dog. It's hard to imagine all of those in this shoe closet with me. But if we do, then the rattlesnake, for example, will be able to sense my body heat. Even if I switched off the light in this closet, it would be able to detect my presence from the infrared radiation I was giving off. A bird in this closet, even though we're surrounded by walls, would be able to detect the magnetic field of the Earth and would know which direction to fly if it was time to migrate.

A dog - if my own dog, Typo, whose a corgi, was in this room, he'd almost certainly be sniffing around. He'd be picking up the odors that are abounding in this space and that I cannot detect. So each of these creatures, we could all be sharing exactly the same physical space and have a radically different experience of that space. And that's what "An Immense World" is about. It's about going through these adventures, these sensory voyages, by considering the umwelten of other animals.

GROSS: Let's talk a little bit about vision. You mentioned ultraviolet light, which we cannot see. All the colors we see are based on three colors - blue, yellow and red, although I really don't understand exactly...

YONG: Red, green and blue.

GROSS: Red, green and blue. Wait, I thought green was blue and yellow.

YONG: So you're thinking about primary colors, like, with paints. For light, it's different. So for light, it's based on red, green and blue.

GROSS: No kidding Really? Oh, I didn't know that (laughter). OK. So we see red, green and blue.

YONG: Yes. We have three kinds of color-sensitive cells in our eyes that are most sensitive to red, green and blue.

GROSS: So what are we missing? Like, for insects that can see or butterflies, I guess, that can see ultraviolet light, what are we missing, for instance, in flowers, which are beautiful enough with what we can see? But what are we missing?

YONG: So flowers, absolutely, are extraordinarily beautiful. But if you had the ultraviolet vision that a bee has, you'll be able to see patterns on those flowers that we can't see. So a sunflower, for example, far from looking just a matte - a uniform yellow would have a stark ultraviolet bullseye at its center. A lot of flowers have these ultraviolet shapes, like arrows and bullseyes, to guide insects towards the pollen at their center. Some predators that eat pollinating insects like crab spiders blend in when - blend in against the flowers to our eyes but really stand out when viewed in ultraviolet. And that acts as a lure to insects. It draws them in towards the waiting spider.

One of my favorite things about the relationship between insect vision and flowers is that if you took all the colors in all the flowers that were out there and you asked what kind of eye, what kind of color vision is best at discriminating between these colors, what you get is an eye that's basically almost what a bee has, an eye that is maximally sensitive to blue, green and ultraviolet. And you might think then that the bee eye has evolved to see the colors of flowers really well. And that's exactly the opposite of what happened because the bee eye came first; the flowers evolve later. And so the colors of flowers have evolved to ideally tickle the eyes of bees. And I think that's a truly wondrous result. It means that beauty, as we know it, is not only in the eye of the beholder. It arises because of that eye. Eyes in viewing nature's palette also affect its paintings.

GROSS: Oh, it's really form follows function.

YONG: Yes. Right.

GROSS: So what exactly is UV light? I mean, we know it's used to, like, sanitize things. And, you know, like my electric toothbrush has a UV light in the little cleanser unit. But in terms of vision, like, what is it? And why can't we usually see it? Like, the UV light in my toothbrush thing, when I turn it on to clean the toothbrush, I see blue. Maybe that's just a blue lightbulb. I don't know.

YONG: Yeah, right. That's the blue part of the light that you can see. So our - we can see light ranging from red to violet, right? It's the classic rainbow of colors that we can perceive. Ultraviolet - literally beyond violet - exists beyond the violet end. It's just off its edge. Now, there's a huge range of UV light that includes the stuff that cause a sunburn and that, you know, we use to sanitize our world. But there's also a section of it near UV that exists quite close to that violet that we can see that effectively paints nature. You know, it's there in flowers, like we've said. It's there on the feathers of birds. And most other animals that can see color can see that UV. We didn't used to think that. We used to think that it was special. That seeing ultraviolet was rare.

And that, I think, reflects how much the limits of our own senses affect our view of the world. We think of things that have - that see differently to us as being extraordinary, whereas, in fact, often, they are very typical. So, you know, most birds can see ultraviolet, most insects can do it. A lot of other mammals can do it. We're actually quite weird in not being able to see ultraviolet. For a long time, scientists used to think that ultraviolet was a sort of secret communication channel that animals used to send coded, like, hidden messages that other creatures could not see. Sometimes that is the case.

There are, for example, fish that look completely uniform yellow. But if you look at them through ultraviolet, you see that they have, like, distinct patterns on their faces, almost like running mascara. But in the main, those messages aren't secret because most animals can actually see them. Ultraviolet abounds in the world around us. And there's just a ton of stuff that we're missing. You know, there are loads of birds, for example, including common backyard birds, where we think the males and females look exactly the same, but they all look very different to each other because they can see the ultraviolet patterns that distinguish the sexes.

GROSS: So scallops have a lot of eyes. I never thought about whether scallops even had eyes, but they have an eye at the end of each of their mobile tentacles. So how do they work, and how do they coordinate? It sounds very, like, sense surround.

YONG: Yes. It is and it isn't. So for most of us, our experience of scallops is just - is going to be a tasty puck of flesh, you know, seared in butter and garlic. That's just part of the entire animal. If you look at the entire animal and its beautiful shell, on the rim of that shell, there'll be dozens of eyes, possibly hundreds in some species. For some scallops, those eyes are really beautiful. They look like neon blueberries. And you would think then that the eyes give scallops this beautiful vision of the world so that they would have this image that's the sum total of what their dozens or hundreds of eyes see. But it's not quite like that. Scallops have very simple brains and too simple to really create this composite view from what their eyes do.

Trying to imagine the visual world of scallops is quite difficult. The way I imagine it, imagine that the scallop is like a security guard looking at a bank of monitors. Each of those monitors represents the view from one single eye. And that eye is good. It has good optics. It's a decent state-of-the-art camera, but what it feeds to the monitor is the simplest possible information. It's just, have I detected something interesting or not? So the scallop, the security guard, doesn't see a bank of dozens or hundreds of images. It just sees like, say, maybe a green light. So something that says, yes, there's something interesting over here that I can then explore with my other senses, like touch or smell, it effectively sees without scenes.

And that's, I think, very difficult for some - for, you know, a species like us to imagine. For me, vision is completely inextricable with this, like, movie-like representation of the world around me. I can see in rich detail everything that's in this weirdly small closet. But if I was a scallop, I wouldn't be able to do that. I would have some visual awareness of the world around me, but I wouldn't have this detailed image that is so synonymous with vision for a human.

GROSS: Well, let's take a short break here, and then we'll talk more about some of the things that humans cannot perceive. My guest is Ed Yong, who writes about science at The Atlantic. His new book is called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." We'll be right back. This is FRESH AIR.


GROSS: This is FRESH AIR. Let's get back to my interview with Ed Yong, a science writer for The Atlantic. He won a Pulitzer Prize for his coverage of COVID. His new book is about how animals' senses allow them to perceive sounds, smell sights, echoes, magnetic fields and more that humans are incapable of perceiving with their senses. It's called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us."

Let's talk about echolocation. Why don't you explain what it is?

YONG: Echolocation is a very advanced form of hearing that a lot of animals, like bats and dolphins, use to perceive the world around them. So they make high-pitched, ultrasonic calls beyond the range of human hearing. And they listen out for the echoes of those calls after they've rebounded off objects around the animal. And by listening for those echoes and passing those echoes, they get a sense of the world around them. A bat in complete darkness can find track and swoop upon a flying insect. It can navigate through the darkness of a cave. It can wend its way around obstacles, all by using this incredibly sophisticated type of hearing.

GROSS: So I want to talk about another side of bats for a moment, because on the one hand, like, that's so remarkable. They have echolocation. It's something we don't have. We don't have this ultrasonic sound ability. At the same time, now when we think of bats, we're thinking bats may have been the origin of COVID. Bats may have been one of the origins of monkeypox. It's named monkeypox because it was discovered first in a monkey, but it spread initially by rodents. At least that's what scientists think now. So when you think of bats, do you think like, oh, they're amazing, or like, oh, they're real trouble?

YONG: Right. Bats do act as reservoirs for viruses. I don't think that they deserve a bad reputation because of that, though. You know, they are extraordinary creatures with extraordinary senses. You know, it's - the fact that we are in trouble now with COVID and multiple other diseases isn't the fault of bats. In many ways, it's to do with how we have reshuffled the natural world around us and crunched down the amount of space that other animals have. You know, we've sort of intruded upon their worlds. And, you know, I've written before that it's like humanity has crushed the world's wildlife in a tight fist, and viruses have spilled out of that as a result.

You know, in many ways, this book is a chance to talk about the incredible things that bats do and the wonderful ways of perceiving the world that might be lost if we persecuted bats or if we continued the practices that reduce the habitats and harm them. Even the kinds of bats that are the most likely reservoirs of SARS and other related viruses have this absolutely extraordinary skill. They have taken echolocation to extreme heights. So a bat typically creates a high-pitched call that covers a range of frequencies, and it's listening out for the echoes that come back.

These specific kinds of bats, the horseshoe bats of Asia, create a call that is very much like a single tone. Like, they just hold a note. And their ears are tuned to the very specific frequency that they put out. That allows them to detect very specifically the fluttering wings of insects. As an insect beats its wing, there comes a point where the wing is exactly angled to the bat as to return a very sharp echo. And that's what the bat is looking for with this very specifically toned call.

GROSS: Can we compare the bat's echolocation with an animal that is really, really different - dolphins? 'Cause they use echolocation, too. They're different in terms of the environment they live in, their size, their needs. So could you compare them?

YONG: Yes. Bats and dolphins are the two masters of echolocation in the animal kingdom. And in some ways, they use it to similar purposes. But the difference between them is mostly because dolphins are echolocating in the water. Their calls travel much further. And so for them, echolocation is a much longer-range sense than it is for bats. You know, a bat can only really detect a small moth within several feet in front of it. A dolphin's echolocation can extend much, much further, and that allows dolphins, for example, to use echolocation to coordinate their movements, to coordinate their hunting strategies over the distance of an entire pod.

Dolphins can also use echolocation kind of like a medical scanner. They can detect hard surfaces that exist inside other animals. You know, a dolphin echolocating on a human could likely see your skeleton, could likely see your lungs. Dolphins can, through echolocation, detect the swim bladders inside the fish that they hunt. They can probably tell the difference between different kinds of prey by the shape of their swim bladders. So they have this incredible see-through ability, but - except it's not really to do with vision, right? It's to do with sound.

GROSS: So this was amazing to me. You write that dolphins can visually recognize objects that they first identified through echolocation. They can even identify the object on a video screen. That seems implausible to me.

YONG: Right. Absolutely - because when you think about sound, you don't think of creating this rich, three-dimensional representation of an object. You know, if I heard this - if I heard a recording of someone playing a saxophone, I would appreciate it. But there's no way I could go from that to, like, recreating the shape of a saxophone in my mind. But dolphins actually are doing that with sound.

They can echolocate on an object. They can then work out - it seems as if they build a physical model of what that object looks like - its shape, maybe its texture - which they then can use as fodder for their other senses. So they can recognize, say, on a screen, the shape of an object that they previously echolocated upon. And that is extraordinary. I think that speaks to not only their weird sensory worlds, but how those extraordinary senses can be deployed by an extremely intelligent animal.

GROSS: Well, let's take a short break here, and then we'll talk some more. If you're just joining us, my guest is Ed Yong, who writes about science for The Atlantic. His new book is called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." We'll be right back. I'm Terry Gross. And this is FRESH AIR.


GROSS: This is FRESH AIR. I'm Terry Gross. Let's get back to my interview with Ed Yong, a science writer for The Atlantic. He won a Pulitzer Prize for his coverage of COVID. His new book is about how animals' senses allow them to perceive sounds, smells, sights, echoes, magnetic fields and more that humans are incapable of perceiving with their senses. The book is called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us."

I want to talk with you about pain, which you describe as the unwanted sense. I heartily agree. And I found this chapter really interesting as somebody who's very pain averse. I was surprised to hear that not all animals experience pain or at least the things that might hurt us and cause us to perceive pain. Some animals don't perceive it as pain. Give us an example of that.

YONG: So a really good example might be to turn to the cephalopods - so octopuses, squid and other related animals. There what you find is that these creatures' experience of pain varies significantly. So a squid, for example, if you injure it in part of its body, it doesn't seem to have a local experience of pain. You know, if I stub my toe, I know, oh, my toe hurts. For a squid, it seems that its entire body becomes hypersensitive. So it's not as if it's like, oh, my third arm hurts. And that might be because a squid's arms are short. It can't really explore a lot of its body. If it knew that part of its body was injured, it might not be able to do anything about it. That's not true for octopuses, which have much longer and dexterous arms, and they do seem to be able to understand - they do seem to have an experience of pain. They do seem to understand exactly which part of their body has been injured. And they will cradle and tend to an injury, much like a human would.

So even here, I think, you know, when you look at this one group of animals, you see very distinct kinds of pain. And I think that's really important, right? Often when we think about pain in the animal kingdom, we think of it as this yes-or-no thing. Either animals experience pain exactly like humans do, or some people contend that they don't experience pain at all. I think in most cases, it's likely to be something in the middle, and their experience of pain is going to vary just as our experience of color or sound or other sensory information might.

GROSS: So what are some of the explanations for why some animals don't perceive pain from some of the substances or things that cause pain in humans?

YONG: It varies a lot. In terms of temperatures, animals have thermal sensors in their nerve cells that open and cause those cells to fire at specific temperatures. The thresholds for firing might differ from one species to another so that what to us might be painful heat, might be extremes of temperature, to them feel like nothing. And I think that's important to think about. You know, when we look at a hibernating animal in the dead of winter, we think that maybe it's sort of suffering through its experience. But in reality, I think most of those animals don't care. They simply don't feel to the cold in the same way that we do. They tolerate it because their senses are calibrated to different conceptions of what cold and hot might be.

GROSS: So I have a cat, and a really interesting thing I learned about cats is that they have muscles in their bellies that sense vibration. Can you elaborate on that?

YONG: Right. So many animals have vibration-sensitive cells in their organs of touch. You know, I have them in my fingertips, for example. It seems that cats have that on their bellies. And one scientist I spoke to, you know, had this hypothesis - like, if a cat is laying down in a crouch, you know, is it also sensing the vibrations caused by possible prey? You know, when we see a lion watching a herd of antelope in the distance, is it also getting information through the crouch about the footsteps of those prey?

Now, I want to be very clear. We don't know the answer to that question, and it might be entirely far-fetched speculation. I write about it in the book specifically because I think it's the type of question we should be asking because a lot of people, including scientists who work on the senses, neglect the world of vibrations, the world of seismic tremors that course through the ground and surfaces along us. You know, we care when those vibrations move through the air. We call them sounds. But when they move through surfaces, we tend to ignore them. Except a huge number of animals - scorpions, moles, elephants - many insects seem to pay attention to that vibrational world. And I think if you really start thinking about it and looking at it, you know, you learn incredible things about nature that you might otherwise have missed.

GROSS: You say you got a puppy during COVID...

YONG: I did get a puppy.

GROSS: ...Named Typo. Great name.

YONG: Thank you.

GROSS: And you write that you've been spending more time on the ground, you know, on the floor with your dog. Have you noticed vibrations that you never noticed before?

YONG: I have, very much so. You know, I can sense the vibrations of our downstairs neighbors coming in to the door - coming in through the front door and walking around. I can tell when cars are driving past in the streets next to me, when big trucks are. And I can feel them in a different way than I could if I was just sitting up and hearing them. And that's what I mean. You know, we pay attention to vibrations moving through the air in the form of sounds, but those moving through the ground, we're a little oblivious to. That's not the case for many animals. I don't think it's the case for my dog, and I don't think it's the case for a lot of other creatures around us.

I can give you one of my favorite examples right from the book about the vibrational worlds of other animals. There are little insects called leafhoppers that sit on plants. You probably haven't heard of them. But if you've ever been, like, in a garden or a park, you will almost certainly have walked past or sat next to one of them. They send - make vibrations with their abdomens that course through the plants so that other leafhoppers can detect but that are inaudible. If you clip a small microphone onto the plant and try and transform those sounds into things we - and transform those vibrations into things we can hear, what you get is just out of this world. The songs of these insects sound like birdsong. They might sound like musical instruments. They might sound like a machinery. They sound entirely unlike what an insect would make. They are beautiful and haunting and clearly everywhere around us without - you know, below - it - to a degree that we cannot sense.

GROSS: And you think that the other leafhoppers aren't hearing it. They're feeling the vibrations of it?

YONG: Exactly, yep. I think that they are feeling those vibrational songs, and I think that the plants around us just course with those vibrational signals.

GROSS: All right. Time for another break. Let me reintroduce you. If you're just joining us, my guest is Ed Yong, a science writer for The Atlantic. His new book is called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." We'll be right back. This is FRESH AIR.


GROSS: This is FRESH AIR. Let's get back to my interview with Ed Yong, a science writer for The Atlantic. He won a Pulitzer Prize for his coverage of COVID. His new book is about how animal senses allow them to perceive sounds, smells, sights, echoes, magnetic fields and more that humans are incapable of perceiving with their senses. It's called "An Immense World."

Now that you've immersed yourself in worlds that you can read about but you can't perceive, how has it changed your sense of the world around you?

YONG: I think it does two things. First, it just makes things that felt very familiar feel newly wondrous. So when I walk Typo along the streets of my neighborhood, those streets look exactly the same to me from one day to the next. But they change on an almost hourly basis to his nose so that every walk, he's exploring really intensely. He's sniffing new patches of sidewalk, and he clues me in to the fact that the world around me that I think of as boring is actually in constant flux. And I think that's a gift. I think I see the parks around me in a new light because I know that the plants there are thrumming with the vibrational songs of leafhoppers. You know, if I look at a body of water, if I look at, you know, the featureless ocean, I understand that it's full of currents that fish can sense. It's full of smells rising from the surface that a seabird can sense. The world just feels richer to me.

And I also see the animals themselves in a different way. You know, I understand that their lives are magnificent and spectacular even when they don't seem to be doing very much at all. You know, if I popped my head out the door of this closet and I looked out my back window, I guarantee you I could see a robin or a sparrow perched there. And it's the most common of birds. And yet, those are animals with incredible color vision. They can see an entire dimension of colors that I can't see. They can hear - their hearing is so finely tuned to fast changes in sounds that they can hear qualities in their own notes that I can't perceive. They are extraordinary even in the mere act of existence. And I think understanding that has been a truly profound gift that writing this book has given me and that I hope that it gives to readers.

GROSS: Your book deals with what animals' senses can perceive. It doesn't, I don't think, really raise the question of consciousness. Do you feel like you've learned anything through researching this book about whether animals and fish and butterflies have consciousness?

YONG: Yeah, that's a difficult and different question. But I think that the senses provide the foundation for starting to think about - thinking about consciousness. You know, they are like the building blocks of whatever subjective experiences we have. And I think they hint at why that world is so difficult for us to get at. You know, even when you think about the senses, even when you think about what an animal might be seeing or feeling or hearing, there's always going to be this gulf between what we experience and what they experience that no amount of scientific research can fully bridge. Alexandra Horowitz, a dog cognition researcher, talks about making these informed, imaginative leaps into the umwelten of other animals, that we always need to speculate a little bit, to go on a voyage of creativity and imagination, to enter those other subjective worlds. That's true for the senses. It's even truer when it comes to thinking about consciousness.

GROSS: I really like the way you end the book, and you write about how most people think of, you know, the majesty of nature as being like canyons and mountains. But you write, equating wilderness with otherworldly magnificence treats it as something remote, accessible only to those with the privilege to travel and explore. It imagines that nature is something separate from humanity rather than something we exist within. Can you talk about that realization?

YONG: Yeah. This speaks to my earlier point that if you start thinking about the umwelt of other animals, you understand that nature's magnificence is all around us. It's in our backyards. It's in our gardens. You know, it's in the bodies of some of the most familiar creatures around us - my dog, the pigeons on the street. I think that if we think of nature as something remote and distant, you know, accessible only to someone who can go to a national park, we lose the impetus to savor and to protect it. I think if you understand instead that nature is everywhere, that you can go - I can go on an adventure just by thinking about the sensory world of the sparrow that sits on the house opposite me. I think then nature feels like something close to me - close to my heart and close to my life. And I feel like if that's the case, people will be more motivated to try and protect it.

You know, protecting nature isn't just about, like, saving whales or pandas or what have you. It's about protecting even things that are close to us. And - because each of those things has a unique way of experiencing the world that is worth learning about, worth cherishing and worth protecting.

GROSS: Let me reintroduce you here. If you're just joining us, my guest is Ed Yong. He's a science writer for The Atlantic and author of the new book "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." We're going to take another short break and then be right back. This is FRESH AIR.


GROSS: This is FRESH AIR. Let's get back to my interview with Ed Yong, a science writer for The Atlantic. He won a Pulitzer Prize for his coverage of COVID. His new book is about how animal senses allow them to perceive sounds, smells, sights, echoes and magnetic fields and more that humans are incapable of perceiving with their senses. It's called "An Immense World."

You're writing about COVID again now. In a compromise in Congress in March, a lot of the funding in the spending bill for COVID was taken out. And you've written about how that's leaving us unprepared to deal with the present and the future of this pandemic. What are we not going to have because this money was seriously reduced?

YONG: It's going to be more difficult to have the things that we are told will protect us from COVID, the tools like tests, vaccines and treatments. Already, it is more difficult for under-insured or uninsured people to have access to any of those things. And given that poorer people who are less likely to be insured have also been disproportionately harmed by the pandemic - that is a moral tragedy - it means that much of our ability to respond to future variants or future viruses is going to be compromised. And that's a huge problem. The pandemic is not over. And this decision to rescind COVID funding is, you know, part of this grand pretense that it is, that, you know, we have entered an era of stability. We haven't. You know, a lot of people are still being infected. A lot of people are still being disabled. A lot of people are still dying. And we need that money to continue the efforts, the - let's be clear - insufficient efforts to control the pandemic so far. If we take it away, things will get worse.

And I think the bigger picture is that for decades or centuries, public health experts have warned that we always go through this panic neglect cycle with epidemics. A new crisis strikes, people freak out because we're unprepared, they throw money and resources at the problem, but at the first sign that things are improving, all of that goes away and we end up back at square one, vulnerable and unprepared again. We've now gone through multiple cycles of that, even within this pandemic, and the loss of COVID funding is part of that same cycle.

Now, you could argue - and people have - that you can't have a forever emergency. Those funds can't last forever. But again, this shows where the U.S. is weak. We have eroded our public institutions, public health system, you know, the health care system, all of that, our public schools in a way that means that when a crisis hits, we throw money at the problem, when we sort of bootstrap these sticking plaster solutions, but then those go away when the funding dries up and we're back to square one. We need now to build something better rather than try and revert back to the weak and vulnerable normal that existed before.

GROSS: There's been at least a couple of times when the CDC has lifted masking mandates. And as I recall, one of them was just as delta was headed our way. And another time was just as - I forget whether it was omicron one or omicron two was headed our way. And, you know, as a layperson, the timing seemed really off to me because you could tell - if you looked at patterns around the world, you could tell that these variants were coming. And, you know, omicron was very contagious. Delta was not only, you know, contagious, but it was a very potent. I'm wondering what you thought about that.

YONG: Yeah, I think that the CDC for the last year or so have made a series of very puzzling and poorly communicated decisions. It does seem to be treating the pandemic as if it was a problem for individuals to contend with based on their own personal risk, which is, frankly, a ludicrous way of approaching a problem like this. By their nature, pandemics are collective problems because my risk of being infected or getting ill is profoundly influenced by the decisions of everyone else around me. And the collective threat of any of these variants to society as a whole is always going to be greater than the threat to any individual.

So they have to be treated as a collective problem. And the top public health agency in the country should know that. And yet, you know, in its most recent policy changes, for example, the CDC had very little to say for people who were still at the highest risk of infection, like the immunocompromised. For them, its advice was, you know, was things like go talk to your doctor about wearing masks. That's just an appalling abdication of responsibility for the agency that more than any other should be concerned about protecting the health of the entire population and the most vulnerable among them first.

GROSS: I have to say, when I saw you had published an article about monkeypox in May in The Atlantic, I thought, oh, I guess it's time to really take this seriously. What made you decide to write about it last month? And I should say, when you started writing about it, it was while you were writing about it that the first case was discovered in the U.S.

YONG: Yes, literally in the middle of a call with a monkeypox expert did she tell me that she had just got a text about the first U.S. case. I think that I wanted to write about it for several reasons. And firstly, I do think it is an important problem. You know, monkeypox is - it can be a serious illness. It's weirdly something I had written about quite a long time ago. I first wrote about monkeypox in 2010 and have sort of briefly touched on it on pieces about the possibility of a future epidemic or pandemic since then. So it was sort of not a new thing. I did think that a lot of people's reactions to monkeypox did seem to be influenced by what happens during COVID.

You know, often with infectious diseases, people tend to fight the last war. So if, you know, people think we overreacted last time, they'll underreact the next time or vice versa. So this piece was about giving people some basic information about monkeypox, of which a topic for which there was already a huge amount of misinformation circling, but also about trying to, like, look at the meta level, like how experiencing a monkeypox epidemic in the middle of another pandemic was changing the way we were reacting to it. It was weird that I actually published two pieces in the same week. One was that monkeypox piece on a topic that I think people were incredibly worried about. But then the other was about the implosion of our health care system, a topic I would think very few people are worried about but absolutely should worry more about.

The arrival of monkeypox is symptomatic of a problem that I've written about before, that we now exist in the pandemicine (ph), an era where new and emerging infectious diseases are just going to queue up to affect us in the years to come. We need to be prepared for those, even if, like in this case, they're not going to be a pandemic to the same degree that that COVID has been. And even if the scale is more limited and localized and more controllable, it's still a problem, right? This is why the loss of COVID funding, the inability to build better systems for dealing with epidemics is so detrimental because these are not the last problems of their kind that we're going to face.

GROSS: And it sounds like because of climate change and migrating populations, it's going to get worse.

YONG: Yeah, absolutely. I wrote about a paper that was - that came out just a month ago, a few months ago. What is time anymore? It showed that in a warming world, animals move. They move into new habitats to track changing environmental conditions. As they do, they create opportunities for their viruses to hop into new hosts. And this grand reshuffling of the world's viruses means that we're in for more epidemics and more pandemics in the future. And a lot of that future is already baked in to our lives because of the amount of warming that has already taken place. So we have no choice but to prepare for more events such as this. You know, I think what that tells us is that many of the greatest problems of all time, the great existential crises like the mass extinction of the world's wildlife, climate change, the rise of pandemics, all of these are different facets of the same global mega problem that we really need to start contending with as a collective humanity.

GROSS: Ed Yong, it's been a pleasure to have you back on the show. Thank you so much.

YONG: Thanks, Terry. Always a pleasure talking to you.

GROSS: Ed Yong is a science writer for The Atlantic. His new book is called "An Immense World: How Animal Senses Reveal The Hidden Realms Around Us." Tomorrow on FRESH AIR, how did we get to the point that Roe v. Wade is likely to be overturned just as we approach its 50th anniversary? What options would women still have? What penalties might they face? And what could it mean for the future of contraception? We talk with Mary Ziegler, a law professor who has written several books about the abortion wars. Her new one is about how the anti-abortion movement helped push the courts to the right and overturn the Republican establishment. I hope you'll join us.


GROSS: Our interviews and reviews are produced and edited by Amy Salit, Phyllis Myers, Roberta Shorrock, Sam Briger, Lauren Krenzel, Heidi Saman, Ann Marie Baldonado, Thea Chaloner, Seth Kelley and Joel Wolfram. Our digital media producer is Molly Seavy-Nesper. Therese Madden directed today's show. I'm Terry Gross. Transcript provided by NPR, Copyright NPR.

You May Also like

Did you know you can create a shareable playlist?


Recently on Fresh Air Available to Play on NPR


Daughter of Warhol star looks back on a bohemian childhood in the Chelsea Hotel

Alexandra Auder's mother, Viva, was one of Andy Warhol's muses. Growing up in Warhol's orbit meant Auder's childhood was an unusual one. For several years, Viva, Auder and Auder's younger half-sister, Gaby Hoffmann, lived in the Chelsea Hotel in Manhattan. It was was famous for having been home to Leonard Cohen, Dylan Thomas, Virgil Thomson, and Bob Dylan, among others.


This fake 'Jury Duty' really put James Marsden's improv chops on trial

In the series Jury Duty, a solar contractor named Ronald Gladden has agreed to participate in what he believes is a documentary about the experience of being a juror--but what Ronald doesn't know is that the whole thing is fake.

There are more than 22,000 Fresh Air segments.

Let us help you find exactly what you want to hear.
Just play me something
Your Queue

Would you like to make a playlist based on your queue?

Generate & Share View/Edit Your Queue